Journal of Fluorine Chemistry, 43 (1989) 119-124

Received: July 26, 1988; accepted: October 25, 1988

COMPLEXES OF MANGANESE TRIFLUORIDE WITH PYRIDINE

W. SAWODNY, K.M. RAU and W. BOLKART

Abteilung für Anorganische Chemie der Universität Ulm, Oberer Eselsberg, 7900 Ulm (F.R.G.)

SUMMARY

The complex $MnF_3.3$ pyridine and its deutero-derivative were synthesized, characterized by analytical, spectroscopic and X-ray data and its thermal decomposition to $MnF_3.2$ pyridine, $MnF_2.2$ pyridine and MnF_2 was studied.

INTRODUCTION

Contrary to the many known addition compounds of the other trihalides of transition metals with organic nitrogen bases [1,2], only one complex, CrF_3 .3 pyridine, has been reported so far for trifluorides [3,4]. For MnF_3 , only salts with protonated organic bases as cations of $[MnF_4]^-$ and $[MnF_5]^{2-}$ complexes seem to exist [5].

RESULTS AND DISCUSSION

A stable 1:3 adduct is formed from MnF_3 and pyridine. The brown crystals are monoclinic (space group $P2_{1/C}-C_{2h}$) with lattice constants a = 1600.5 (0.9) pm, b = 815.7 (0.4) pm, c = 1255.5 (0.5) pm, α and $\gamma = 90$, $\beta = 102.8$ (0.4). The volume of the unit cell is 1639.09 $10^6 pm^3$, with 4 molecules in general position $(1-C_1)$, the density is 1.41 g/cm³. A more exact determination of the structure was not possible because of permanent twinning.

0022-1139/89/\$3.50

© Elsevier Sequoia/Printed in The Netherlands

The infrared spectra of $MnF_3.2$ pyridine, $MnF_3.3$ pyridine and $MnF_3\cdot 3$ pyridine(d5) are reported in Table 1. Besides the many pyridine bands, which can be easily located by comparison with pyridine and pyridine-d5 itself [6,7], but show frequent splitting due to the presence of three such ligands, the bands at 613, 562 and 482 cm⁻¹ can be attributed to MnF stretching vibrations, others below 300 cm⁻¹ may either be MnN stretchings or MnF deformations. Though the precise position of the ligands cannot be derived exactly from these data, a local C_{3v} symmetry of the MnF₃ group seems very improbable due to the observed number of MnF stretchings.

The complex $MnF_3 \cdot 3$ pyridine is thermally stable up to 60° C. Thermogravimetric measurements give the results depicted in Figure 1. Between 65° and 90° C, one mole of pyridine is released, giving $MnF_3 \cdot 2$ pyridine which could be isolated as a light brown powder. The slow loss of weight between 90 and 160° C corresponds to one fluorine atom, thus, $MnF_2 \cdot 2$ pyridine should have been formed, which loses the two pyridine ligands between 160° and 220° C, leaving MnF_2 behind, as proved by chemical analysis.

loss of weight

Fig. 1. Thermal decomposition of MnF2.3 pyridine.

120

TABLE 1

Infrared spectra of $MnF_3.2$ pyridine, $MnF_3.3$ pyridine and $MnF_3.3$ pyridine - d5 (region 1650-2000 cm⁻¹ omitted)

MnF ₃ .2 py	MnF ₃ .3 py	MnF ₃ .3 py-d5	assignment
3180 w 3150 w 3117 m)
3105 m	3104 vs		
3084 m	3082 s		$V_{2}, V_{7}, V_{12},$
3076 m			2 70 13
3062 m	3062 s		$v_{202}, v_{20b}(py)$
3051 m	3049 s		204 200
	3033 m		
	3020 sh		
3008 w	3000 m		
		2383 w]
		2336 w	
		2300 sh	^v 2 ^{,v} 7 ^b , ^v 13 [,]
		2289 s	γ ν_{20} , ν_{20} (py-d5)
		2268 m	20a 20b
		2260 m	
1/00	1(22)	2221 W	2
1633 w	1632 wm	1601 m	N (py)
1606 vs	1500 S	1001 m	⁸ a ^(py)
1598 S J	1598 m 🕽		
1500 SH	1573 m	1573 sh	V_{a} (py)
1560 m	1575 11	1563 s 1	86(F)/
1.200 m 1		1553 s	∨ _{8a} (py-d5)
		1534 s	v_{ol} (py-d5)
1485 s	1487 sh ì		80 ()
1,000 0	1482 s		$v_{19a}(py)$
1453 s l	,		
1447 s	1449 vs 1		
1442 s	1445 vs 🕻		ν _{19b} (ру)
•	-	1412 vw	190
1358 w	1359 w		$v_{14}(py)$
		1344 w	$v_{19a}^{(py-d5)}$
		1319 s	
		1311 s }	V _{19b} (py-a))
	1306 vw	1300 Sh J	
1244 wm	1248 w	1255 WIII 1262 v 1	
		1242 W	v (py-d5)
1010 - 1		1251 34	14(p) 20)
1219 5	1213		v_{o} (pv)
1210 5	1162 sh 1		9a (F)
1102 5	1154 5		$v_{1r}(py)$
114/ 5 1	115, 5,	1092 m	15,15
1077 sh 1	1071 sh 1		
1068 vs	1066 vs 🕻		ν ₁₈₂ ,ν _{18b} (ру)
1046 s 🚶	1045 s 🐧		
1038 s 🕇	1034 vs 🕽		∨ ₁₂ (ру)
		1041 m	
		1028 sh j	$v_3(py-a)$
			(Continued)

<u> </u>						
1016	s	1017	s }			<u>у</u> (ру)
1006	s	1012	m j			v ₁ (py)
				1018 1007	m }	$v_{12}^{1}(py-d5)$
				982	s	$v_{1}(pv-d5)$
975	w٦	971	vwl	973	s [I (F) (I)
966	ŵ }	958	w }			V _{17a} (py)
892	w }	883	w	889	S	$v_{9a}(py-d5)$ $v_{1a}(py)$
870	w			855	sh	$V_{15}(py-d5)$
				845	sh }	V_{10} (py-d5)
				828	s l	100
				823	sh 🖌	5, 018a(py-05)
775	vs]	788	s]	801	11	17a ^(py-d))
770	vs >	770 757	w }			ν ₁₁ (ру)
704	vsl	720	sh j			ν ₄ (ру)
693	vs J	704	vs	688	W	$v_{10a}^{(py-d5)}$
655 644	vs sh l	652 645	m ms 1			v _{бb} (ру)
633	vs 🕽	623	ms }	())		$v_{6a}(py)$
				633 624	sh,w s	$v_{11}^{-}(py-d5)$ $v_{21}^{-}(py-d5)$
633	vs	613	s	612	s	MnF stretching
				600	S	$v_{6a}(py-d5)$
548	VW	562	S	563	sh	MnF stretching
				539	s	ν ₄ (py-d5)
474	m	482 438	s m 1	481	S	MnF stretching
430	m	428	sh 🕇			ν _{16b} (ру)
425	m	423	m }			V. (DV)
202			··· 4	401	s	$v_{16b}^{16a(py-d5)}$
393	m			0.01		MnF ?
				384 378	s s	$v_{1} \in (pv-d5)$
327	VS				, J	16a 🗤
200	511	279	sh	280	sh	
258	c	267	s	268	vs	N_3MnF_3 skeleto:
233	sh	200	511	232	sh	vibrations
				228	sh	

EXPERIMENTAL

A Schlenk tube of 100 mm length and 15 mm diameter, containing a magnetic stirrer, is filled with 50 - 100 mg MnF_3 . Pyridine (pyridine-d5) is added at a rate of 1 ml per 25 mg MnF_3 . After cooling down with liquid nitrogen, the Schlenk tube is evacuated and sealed. Then the tube is warmed up to room temperature, and the content is stirred slowly and constantly. After 4 to 5 days, brown crystals begin to deposit on the glass wall above the surface of the liquid, which grow slowly in a several weeks' period. These crystals are isolated and dried in a fast stream of argon. They are stable in dry air, but decompose quickly with moisture. Thus, its strict exclusion during handling all products is mandatory.

Infrared spectra were obtained with a Perkin-Elmer spectrometer 883 for the nujol and hostaflon mulls of the substances, with CsJ as window material.

Thermogravimetric measurements were made using a Netzsch apparatus TG 409 E. The rate of heating was 2 $^{\rm 0}$ C $\,$ per min. in air.

Magnetic moments were measured by the Faraday-Curie method with a magnetic balance by Bruker, giving 5.1 B.M. for $MnF_3.3$ pyridine and 4.85 B.M. for $MnF_3.2$ pyridine, which is indicative of the trivalent state of manganese.

Analytical data (theoretical values in brackets): MnF_3 .3 pyridine: 15.9±0.5 (15.73)%Mn, 16.5±0.5 (16.32)%F, 51.0±0.5 (51.59)%C, 4.2±0.2 (4.33)%H, 11.9±0.3 (12.03)%N. MnF_3 .3 pyridine-d5: 14.9±0.5 (15.08)%Mn, 19.9±0.5 (15.64)%F, 48,9±0.5 (49.45)%C, 8.1±0.4 (8.30)%D, 11.4±0.7 (11.53)%N. MnF_3 .2 pyridine: 20.1±0.5 (20.34)%Mn, 21.2±0.5 (21.10)%F, 44.2±0.3 (4.46)%C, 3.7±0.1 (3.73)%H, 10.3±0.1 (10.37)%N.

ACKNOWLEDGEMENT

For the X ray measurements performed with a single crystal diffractometer Philips PW 1100 we are indebted to the Sektion für Röntgen- und Elektronenbeugung der Universität Ulm.

REFERENCES

- 1 R. Colton and J.H. Canterford, 'Halides of the First Row Transition Metals', Wiley Interscience, London (1969).
- 2 J.C. Bailar, H.J. Emeleus, R. Nyholm and A.F. Trotman-Dickenson, 'Comprehensive Inorganic Chemistry', Vol. 3, Pergamon Press, Oxford (1973).
- 3 N. Costachescu, Ann. Sci. Univ. Jassi, <u>7</u>(1912) 87, cited in J. Chem. Soc (1912), 102.
- 4 F. Hein, J. Reschke and F. Pintus, Chem. Ber., 60(1927) 1.
- 5 F. Olsson, Z. Anorg.Allg. Chem., <u>187</u>(1930) 313.
- 6 D.P. DiLella and H.D. Stidham, J. Raman Spectrosc., 9(1980) 90.
- 7 H.D. Stidham and D.P. DiLella, J. Raman Spectrosc., <u>9</u>(1980) 247.